Environmental Product Declaration

BioLock Concrete Admixture

According to ISO 21930 ISO 14025

1. General Information

Manufacturer Name:	BioForceTech – 938 Linden Avenue South San Francisco California USA							
Program Operator:	ASTM International 100 Barr Harbor Drive West Conshohocken, PA 19428-2959, USA							
Declaration Number:	EPD 507							
Reference PCR:	ISO 21930: 2017							
Date of Issuance:	July 15, 2023							
End of Validity:	July 15, 2028							
Product Name:	BioLock Admixture							
EPD Owner:	Solid Carbon							
Declared Unit:	1 Tonne of BioLock Admixture							
EPD Scope:	Cradle-to-gate with options (A1, A2, A3, C4)							
Verification:	ISO 21930 serves as the core PCR. Independent verification of the declaration according to ISO 14025 and ISO 21930. ☐ internal internal							
LCA Reviewer and EPD Verifier:	Timothy S. Brooke							

2. Product Information

2.1 Company Description

Solid Carbon develops and markets biobased concrete admixtures and binders that safely store waste carbon streams that would otherwise end up in the atmosphere in concrete. Depending on the application, product and dosage, Solid Carbon products can be used to enhance the strength, modify the performance or enrich the aethetics of concrete used in both cast-in-place and precast applications.

2.2 Product Description

BioLock concrete admixture is a carbon rich material made through the pyrolysis of biosolids wastestreams. BioLock is incorporated into concrete for specific performance advantages such as the storage of biogenic carbon in concrete.

Figure 1: BioLock concrete admixture visual representation.

2.2 Technical Data

Table 1 shows physical property data for BioLock admixture

Table 1: Technical Data		
Property	Value	Unit
Moisture Content	< 5	%
Carbon Content	30.47	%
Electrical Conductivity	1.35	dS/m
Bulk Density	795	kg/cubic meter
Fluid Temperature	2251	F
Elemental Ash Content	66	%

3. LCA Calculation Rules

3.1 Declared Unit

The declared unit is 1 Tonne of BioLock Admixture produced by the manufacturer.

3.2 System Boundary

The system boundary for this study is cradle-to-gate with options, including disposal at end of life. (see also Table 3):

- A1 Raw material supply: Extraction, handling, and processing of input materials.
- **A2** *Transportation*: Transportation of all input materials from the suppliers to the gate of the manufacturing facility.
- **A3 Manufacturing:** The preparation processes of the manufacturing facility. This phase also includes the operations of the manufacturing facility and all process emissions that occur at the production facility.
- **C4 Disposal:** The disposal of BioLock admixture at end of life is included and exemplifies the non-reactivity of biochar that leads to permanent biogenic carbon over the product life cycle.

3.3 Estimates and Assumptions

All significant foreground data was gathered from the manufacturer based on measured values.

3.4 Cut-off Criteria

The cut-off criteria for all activity stage flows considered within the system boundary conform with ISO 21930: 2017 Section 7.1.8. Specifically, the cut-off criteria were applied as follows:

- All inputs and outputs for which data are available are included in the calculated effects and no collected core process data are excluded.
- A one percent cut-off is considered for renewable and non-renewable primary energy consumption and the total mass of inputs within a unit process. The sum of the total neglected flows does not exceed 5% of all energy consumption and mass of inputs.
- All flows known to contribute a significant impact or to uncertainty are included.
- The cut-off rules are not applied to hazardous and toxic material flows all of which are included in the life cycle inventory.

No material or energy input or output was knowingly excluded from the system boundary.

3.5 Background Data and 3.6 Data Quality

Data was gathered for the primary material and energy inputs used in production for calendar year 2022. Table 2 describes each LCI data source for raw materials (A1), transportation (A2),

the core manufacture process (A3), and disposal (C4). Table 2 also includes a data quality assessment on the basis of the technological, temporal, and geographical representativeness.

Table 2: Secondary Data Sources and Data Quality Assessment									
A1: Raw Material Inputs									
Inputs	LCI Data Source	Geography	Year	Data Quality Assessment					
Biosolid	No burden: waste product	US	N/A	N/A					
A2: Transportation									
Inputs	LCI Data Source	Geography	Year	Data Quality Assessment					
Trucking	USLCI: Transport, single unit	Global	2014	Technology: very good					
	truck, short-haul, diesel			Time: good					
	powered, Northwest/tkm/RNA			Data is <10 years old					
				Geography: very good					
A3: Manufacturing									
Energy	LCI Data Source	Geography	Year	Data Quality Assessment					
Electricity	Ecoinvent 3: Electricity, low	Global	2018	Technology: very good					
	voltage {WECC} market for			Time: very good					
	Cut-off, U			Data is <5 years old					
				Geography: very good					
C4: Disposal									
Process	LCI Data Source	Geography	Year	Data Quality Assessment					
Landfill	ecoinvent 3.4:	Global/US	2018	Technology: very good					
	Inert waste {RoW}			Time: very good					
	treatment of, sanitary landfill			Data is <5 years old					
	Alloc Rec, U (2018) [18]			Geography: very good					
	Modified foreground process								
	with United States average								
	electricity grid								

3.7 Period under Review

Data was gathered for the primary material and energy inputs used in the production for calendar year 2022.

3.8 Allocation

Solid Carbon produces multiple products. Since the primary data for manufacturing was only available on a facility level, the environmental load among the products produced is allocated

according to its mass. For waste that is recycled, the 'recycled content approach' was chosen. The recycling of waste generated by the product system is cut off.

3.9 Comparability

This LCA was created using industry average data for upstream materials. Data variation can result from differences in supplier locations, manufacturing processes, manufacturing efficiency and fuel types used.

4. LCA Results

Life cycle impact assessment (LCIA) is the phase in which the set of results of the inventory analysis – the inventory flow table – is further processed and interpreter in terms of environmental impacts and resource use inventory metrics.Table 3 describes the system boundaries reported in this EPD. Tables 4 and 5 below summarize the results for the cradle-to-gate (A1-A3) product system.

Table 3: Description of the System Boundary (x: included in LCA; mnd: module not declared; mnr: module not reported)																		
F	Produc	t	Cons Inst	truction allation	Use			End-of-Life			Benefits Beyond the System Boundary							
Raw Material Supply	Transport	Manufacturing	Transport	Construction / Installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational Energy Use	Operational Water Use	De-Construction/ Demolition	Transport	Waste Processing	Disposal	Reuse	Recovery	Recycling
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D	D	D
х	х	х	mnd	mnd	mnd	mnd	mnr	mnr	mnr	mnd	mnd	mnd	mnd	mnd	х	mnd	mnd	mnd

Table 4: LCIA Results for 1 Tonne BioLock Admixture										
Environmental Indicator	Abbreviation	Units	A1-A3	A1-A3 +	A1	A2	A3	C4		
Core Mandatory Impact Indicator										
Global warming potential total	GWPTOTAL	kg CO₂-eq	-1.03E+03	-1.01E+03	-1.12E+03	0.00E+00	9.45E+01	1.06E+01		
Global warming potential fossil	GWPFOSSIL	kg CO₂-eq	9.45E+01	1.05E+02	0.00E+00	0.00E+00	9.45E+01	1.06E+01		
Global warming potential biogenic	GWPBIO	kg CO2-eq	-1.12E+03	-1.12E+03	-1.12E+03	0.00E+00	0.00E+00	0.00E+00		
Depletion potential of the stratospheric ozone	ODP	kg CFC-	7.24E-06	8.86E-06	0.00E+00	0.00E+00	7.24E-06	1.62E-06		
Acidification potential of land and water	AP	kg SO₂-eq	2.30E-01	2.67E-01	0.00E+00	0.00E+00	2.30E-01	3.72E-02		
Eutrophication potential	EP	kg PO₄-eq	7.46E-01	7.61E-01	0.00E+00	0.00E+00	7.46E-01	1.51E-02		
Formation of tropospheric ozone	SFP	kg O₃-eq	3.15E+00	4.02E+00	0.00E+00	0.00E+00	3.15E+00	8.66E-01		
Abiotic depletion potential for fossil resources	ADPf	MJ	1.11E+03	1.22E+03	0.00E+00	0.00E+00	1.11E+03	1.13E+02		
Use of Primary Resources	-	-	-				-			
Renewable primary energy carrier used as	RPRE	MJ	3.05E+02	3.08E+02	0.00E+00	0.00E+00	3.05E+02	3.46E+00		
Renewable primary energy carrier used as	RPRM	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
Non-renewable primary energy used as energy	NRPRE	MJ	1.44E+03	1.56E+03	0.00E+00	0.00E+00	1.44E+03	1.23E+02		
Non-renewable primary energy used as material	NRPRM	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
Secondary Material, Secondary Fuel and Recovered	ed Energy									
Use of secondary materials	SM	kg	1.00E+03	1.00E+03	1.00E+03	0.00E+00	0.00E+00	0.00E+00		
Use of renewable secondary fuels	RSF	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
Use of non-renewable secondary fuels	NRSF	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
Recovered energy	RE	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
Mandatory Inventory Parameters										
Use of freshwater resources	FW	m ³	4.13E-01	5.37E-01	0.00E+00	0.00E+00	4.13E-01	1.24E-01		
Indicators Describing Waste										
Disposed of hazardous waste	HWD	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
Disposed of non-hazardous waste	NHWD	kg	0.00E+00	1.00E+03	0.00E+00	0.00E+00	0.00E+00	1.00E+03		
Disposed of high-level radioactive waste	HLRW	m³	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
Disposed of low-level radioactive waste	LLRW	m ³	1.10E-06	1.10E-06	0.00E+00	0.00E+00	1.10E-06	0.00E+00		
Components for reuse	CRU	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
Materials for recycling	MFR	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
Materials for energy recovery	MER	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
Exported electrical energy (waste to energy)	EEE	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
Exported thermal energy (waste to energy)	ETE	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		

The biogenic carbon emissions across the declared modules negative due to the permanent carbon storage caused by the product. Based on ISO 21930 accounting rules, all carbon removed from the atmosphere (characterized in the LCIA as -1 kg CO2e/kg CO2) in module A1 is calculated as being emitted to the atmosphere in other modules (characterized in the LCIA as +1 kg CO2e/kg CO2). Total GWP_{BIO} includes biogenic carbon emissions and removals from the information modules A1-A3 and also reports values for modules C4 to account for the biogenic carbon that is not emitted in the declared modules to ensure a net neutral biogenic carbon balance. The A1-A3 column indicates the summation of A1-A3 and C4.

5. Interpretation

Figure 2 shows the relative contribution to the cumulative impacts of the A1 through A3 phases of the cradle-to-gate life cycle. There is no significant impacts know for A1 or A2 therefore for all the major impact categories (GWP, ODP, AP, EP, SFP, ADPf), the biggest contributor is A3 – Manufacturing.

Figure 2. Contribution analysis for BioLock Admixture.

6. References

- 1. ASTM 2020 ASTM Program Operator for Product Category Rules (PCR) and Environmental Product Declarations (EPDs) General Program Instructions v8, April 29th.
- 2. Athena Institute: 2021 A Cradle-to-Gate Life Cycle Assessment of BioLock Admixture.
- 3. ISO 21930: 2017 Building construction Sustainability in building construction Environmental declaration of building products.
- 4. ISO 14025: 2006 Environmental labeling and declarations Type III environmental declarations Principles and procedures.
- 5. ISO 14044:2006/AMD 1:2017/ AMD 2:2020 Environmental management Life cycle assessment Requirements and guidelines.
- 6. 14040:2006/AMD 1:2020 Environmental management Life cycle assessment Principles and framework.

